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Abstract—We have implemented a flexible User Defined 
Operator (UDO) for labeling connected components of a binary 
mask expressed as an array in SciDB, a parallel distributed 
database management system based on the array data model. 
This UDO is able to process very large multidimensional arrays 
by exploiting SciDB's memory management mechanism that 
efficiently manipulates arrays whose memory requirements far 
exceed available physical memory. The UDO takes as primary 
inputs a binary mask array and a binary stencil array that 
specifies the connectivity of a given cell to its neighbors. The 
UDO returns an array of the same shape as the input mask 
array with each foreground cell containing the label of the 
component it belongs to. By default, dimensions are treated as 
non-periodic, but the UDO also accepts optional input 
parameters to specify periodicity in any of the array dimensions. 
The UDO requires four stages to completely label connected 
components. In the first stage, labels are computed for each 
subarray or chunk of the mask array in parallel across SciDB 
instances using the weighted quick union (WQU) with half-path 
compression algorithm. In the second stage, labels around 
chunk boundaries from the first stage are stored in a temporary 
SciDB array that is then replicated across all SciDB instances. 
Equivalences are resolved by again applying the WQU 
algorithm to these boundary labels. In the third stage, relabeling 
is done for each chunk using the resolved equivalences. In the 
fourth stage, the resolved labels, which so far are "flattened" 
coordinates of the original binary mask array, are renamed with 
sequential integers for legibility. The UDO is demonstrated on a 
3-D mask of O(1011) elements, with O(108) foreground cells and 
O(106) connected components. The operator completes in 19 
minutes using 84 SciDB instances.  
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I.  INTRODUCTION 
SciDB [1] is an open-source all-in-one data management 

and advanced analytics platform that features complex 
analytics inside a next-generation parallel array database. It is 
based on shared-nothing architecture for data parallelism, data 
versioning and provenance. Because it is array-based, SciDB 
is more suitable for scientific data analytics than traditional 
Relational Database Management Systems (RDBMS’s). It 

provides extensive and flexible operators that can be 
efficiently “wired” together for more complex operations. 
SciDB is also extensible through User Defined Types (UDTs), 
User Defined Functions (UDFs) and User Defined Operators 
(UDOs).  

This paper focuses on developing a UDO that performs 
Connected Component Labeling (CCL) of a binary mask 
stored as a SciDB array. Typically, such a mask array will be 
the result of performing some thresholding on other SciDB 
array(s) using a combination of operators/functions. For our 
specific examples, we are interested in studying the 
climatology of extreme weather events, e.g. winter blizzards, 
that may be present in multi-decadal data generated by climate 
models or retrieved from ground- and space-based 
instruments. In order to study the climatology of these events, 
the first step is to locate them and then track the evolution of 
each of them in space and time. Each of these events are 
represented by a group of connected cells spanning space and 
time. CCL is used to uniquely label each group of connected 
cells as a separate event. This work is conducted under the 
auspices of a larger project where we are using SciDB to 
integrate data storage and analysis. This paper also documents 
the presentation in [2].  

II. IMPLEMENTATION DETAILS 

A. Requirements 
The use of CCL is ubiquitous in image processing where 

images are scanned and pixels are grouped into components 
based on some heuristic pixel connectivity. However, 
whereby images are usually represented by two-dimensional 
binary masks (or pixels), providing SciDB with CCL 
capability logically requires an implementation that will 
support arbitrary number of dimensions. It is thus important 
for the resulting UDO to have usability comparable with other 
SciDB operators where arrays of arbitrary dimensions are 
easily handled. Moreover, since our interest lies primarily in 
earth science applications where we may have periodic 
boundary conditions and/or may desire to enforce 
connectivity in any combination of the dimensions, our 
implementation must provide means to support these. Finally, 
our implementation must leverage SciDB’s efficient ability to 
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handle larger-than-physical-memory arrays. This is 
particularly important for the CCL computation given the 
transitive nature of connectivity that induces large memory 
footprint. 

B. Steps for meeting the requirements 
• Arbitrary dimensionality: Each foreground pixel is 

uniquely identified by the pixel’s flattened 
coordinate. This makes it easier to generically create 
pairwise neighbors that satisfy some specified 
connectivity, including periodic boundary cells that 
are adjacent. Connected pairwise neighbors is key 
input to the Weighted Quick Union (WQU) with 
half-path compression algorithm [3] used for the 
CCL computation. For an N-dimensional array, this 
identifier is computed as 

 
𝑃"#$%&	 = 𝑥*+, + 	 (𝑥$*+/

$ 𝐷1)*+/
13$4,         (1) 

 
where 𝑃"#$%&	 is the flattened coordinate for cell at 
coordinates 𝑥";	𝑖 = 0, 1, . . . 𝑁 − 1 . Dr is the extent 
of dimension along coordinate r.  

• Flexible connectivity: This is achieved by an 
auxiliary array of the same dimension as the mask 
array but with an extent of three (3) in each 
dimension. For example, for  2-D, the connectivity 
array can be plotted as shown in Fig. 1.   

• Larger than physical memory arrays: SciDB 
provides MemArray, a data object with associated 
methods for handling large arrays distributed in 
chunks across all instances. It allows for each chunk 
to be operated on at a time by each instance. 
Parallelism comes from all instances working 
concurrently. This mechanism is used extensively in 
our implementation to manage memory usage.  

C. Implementation Description 
The implementation is illustrated by the simple example 

2-D mask array shown in Fig. 2 where foreground cells are in 
black. The complete array is distributed into four chunks, 
each occupying a quadrant in Fig. 2. In general, chunk 
assignment to instances is managed by SciDB using a 
heuristic hash function. 4-connectivity is assumed for this 
illustration. Each foreground cell is first uniquely represented  

  

by its flattened coordinate as described in Section II(B).  
There are four stages to the implementation. In Stage 1, 

each instance computes labels for its chunks, one chunk at a 
time. Parallelism is achieved by all instances proceeding 
concurrently. In this stage, the 4-connectivity auxiliary array 
is applied to each foreground mask to determine pairs of 
adjacent cells. Duplicate pairs are eliminated. The WQU 
algorithm is applied to each pair to determine the CCLs for 
the chunk. The CCLs are then written to MemArray. Fig. 3 
shows the CCLs for each chunk after the first stage. 

In Stage 2, label equivalencies are resolved. The 
MemArray from Stage 1 is parsed for boundary labels. These 
boundary labels are written into a new MemArray that is then 
replicated on all instances such that each instance has a global 
view of all boundary labels. Like in the first Stage, the 4-
connectivity auxiliary array is applied to each label to 
produce pairs of connected boundary labels and the WQU 
algorithm is applied to generate CCLs of labels that are 
connected along the chunk boundaries. These resolved 
boundary labels are written to a 1-D MemArray indexed by 
boundary labels from Stage 1 to ensure fast access during the 
next stage i.e. Stage 3. A 2-D rendering of the resolved 
boundary labels is shown in Fig. 4.  

 In Stage 3, the labels from Stage 1 are relabeled and 
written to a new MemArray by propagating the resolved 
boundary labels inward as necessary using the 1-D 
MemArray from Stage 2 as follows:  
 

if stage2_array[stage1_label] ! NULL : 
stage3_label <- stage2_array[stage1_label] 

else : 
stage3_label <- stage1_label 

 
Fig. 5 shows the result after Stage 3. 

For the fourth and final stage, a relabeling is done such 

4-connectivity 8-connectivity 

(a) 

2-connectivity 

(b) (c) 
Figure 1.  Sample 2D Connectivity Arrays.  
 

Figure 2.   2-D Mask Array for demonstrating the UDO CCL 
implementation 



  

that the out-of-order labels (represented by a subset of the 
“flattened” coordinates of the original mask array) are now 
represented by sequential integers for legibility. The result of 
this stage is shown in Fig. 6.  

The new CCL UDO, named “ccl” is invoked as follows 
via SciDB’s Array Functional Interface (AFL) as: 

 
iquery -anq “store(ccl(mask_array, con_array), ccl_array)” 
 

where “ccl” is the new CCL UDO, “store” is the SciDB native 
operator to write results into an array, “mask_array” is the 
binary mask array, “con_array” is the connectivity array and 
“ccl_array” is the array into which the resulting CCLs are 
written.  

If boundary conditions are periodic, say in both 
directions, the new operator will be invoked with additional 
(integer) parameters such as: 

 
iquery -anq “store(ccl(mask_array, con_array, 1, 2), ccl_array)” 

 
where the additional parameters “1” and “2” simply means 
periodicity should be applied in both directions. For our 2-D 
example, this invocation produces the labels shown in Fig. 7.  

III. REAL LIFE USE CASE 
The motivation for our real life application was to study 

the climatology of winter blizzards present in the gridded 
GEOS-5 MERRA hourly data spanning a 37-year period from 
January 1, 1979 to December 31, 2015, where GEOS-5 stands 
for the Goddard Earth Observing System Model, Version 5 
[4], and MERRA stands for Modern-Era Retrospective 
analysis for Research and Applications [5]. MERRA has a 
horizontal spatial resolution of ⅔° in longitude and ½° in

 

latitude. Thus, this amounts to approximately 
~24×365×37=324,120 time slices, each containing 
540×361=194,940 grid cells, totaling ~6.32×1010 grid cells. 
Each cell, however, contains multiple variables that need to be 
processed in our use case. 

The details for computing the mask array where 
foreground cells are identified as those meeting a blizzard 
threshold have been presented in [6]. The baseline SciDB 
array used to compute the mask array in [6] was created by 
assembling necessary variables (or attributes in SciDB 
terminology) pulled from four hourly data sets of GEOS-5 
MERRA namely: MAT1NXFLX [7], MAT1NXLND [8], 
MAT1NXSLV [9] and MAC0NXASM [10]. The focus of the 
present work was to study the viability of the CCL UDO for 
identifying blizzards as distinct events. An event in this 
context is a group of blizzard cells connected in spatial and 
temporal coordinates by a defined connectivity criterion 
represented by the auxiliary connectivity array. 

Consequently the mask array generated by [6] is 3-D i.e. 
2-D space and 1-D time and it is O(1011) in size. The number 
of foreground cells is O(108). The connectivity array used is 
the 3-D equivalent of the 4-connectivity array of the 2-D case 
shown in Fig. 1, i.e. two cells are considered connected if they 
share a same facet. The new CCL UDO is able to accurately 
compute all labels totaling over one million, i.e. O(106). Fig. 
8 shows the presence of two blizzard events in central and 
eastern United States at hours 1330Z and 1430Z on February 
5, 2010. Fig. 9 shows the same events at 18:30Z and 19:30Z 
with the event to the west already dissipated at 19:30Z. The 
top rows of Fig. 8 and Fig. 9 show the mask array while the 
bottom rows show the events accurately identified by the CCL 
UDO. 

Figure 3.   CCLs after Stage 1 
Figure 4.    Boundary CCLs after Stage 2 



 
 
 

IV.  COMPUTATIONAL PERFORMANCE 
Table 1 shows the wall times, as a range, for the different 

stages of the CCL UDO for the real life use case. The lower 
number is for the fastest instance and the higher number for 
the slowest. It should be noted that the reported times include, 
as necessary, computation of connected pairs, computation of 
the CCL, reading from MemArrays and writing to 
MemArrays. As expected, with the exception of stage 2, the 
scalability is reasonable. The equivalency resolution part of 
stage 2 that does not scale also happens to dominate the 
computational cost. This is because the foreground boundary 
cells for all chunks are involved in this part of the work. We 
are looking for ways to improve the scalability for this phase 
to reduce the total wall time. One critical goal that we have 

 

 

 

achieved is that the operator can compute CCL for arbitrarily 
large mask arrays within a reasonable amount of time without 
running out of physical memory, which our previous 
implementations failed to accomplish. For our use case, it took 
under twenty minutes to compute the CCL using 84 SciDB 
instances. 

V. CONCLUDING REMARKS 
We have implemented a UDO to compute CCL within 

SciDB. The UDO has been demonstrated on a real life use 
case where over a million labels were computed in under 
twenty minutes to represent blizzard events in 37 years of 
hourly GEOS-5 MERRA data. The UDO is able to leverage 
SciDB’s MemArray to handle larger than physical memory 
cases. While most part of the UDO scales with number of 
instances, the equivalency resolution i.e. stage 2 which 
dominates the wall time requires significant improvement. 
This is a subject for future effort.  
Additionally, the arrays that we deal with continue to grow in 
the time dimension. It is impractical and unreasonable to re-
compute all labels each time we add new time slices especially 
since most events will last only a limited number of time steps. 
Therefore, it is important to only compute labels that have not 
been completed in the previous computations. Hence, another 
area of future effort is to augment the CCL UDO with the 
ability to exclude labels that have been completely resolved 
previously from any later computations due to the addition of 
new time slices. 

TABLE I. WALL TIMES FOR THE STAGES OF THE CCL UDO (SECONDS) 

Stage Number of Instances 
14 28 56 84 

1 88  - 114 41 – 54 21 - 27 12 – 18 
2 (replicate) 9 – 12 7 – 9 6 - 12 6 – 14 
2 (resolve) 725 - 940 715 - 950 705 - 935 705 – 975 
3 240 - 320 115 - 160 85 - 120 33 – 55 
4 364 - 475 180 - 240 90 - 125 49 – 81 

Figure 5.    CCLs after Stage 3 Figure 7.   CCLs with periodic boundary conditions 

Figure 6.    CCLs after Stage 4 (Final Stage) 
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Figure 9.   Same events as Fig. 8 but at 1830Z and 1930Z.   
Note: Only on event persists beyond 1830Z 

Figure 8.   Two blizzard events at 1330Z and 1430Z of February 5, 2010. 
Top row: binary mask. Bottom row: the events identified by the new UDO 


